
Achieving portability for a highly optimized GPU code for
3D Fourier Transforms at extreme problem sizes

Kiran Ravikumar1, Oscar Hernandez2, John Levesque3,
Stephen Nichols2, P.K. Yeung1

kiran.r@gatech.edu

1Georgia Institute of Technology, 2Oak Ridge National Laboratory, 3Cray (HPE)

Performance, Portability, and Productivity in HPC Forum
September 1-2, 2020

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 1 / 12

Introduction & Motivation

Communication intensive codes on exascale heterogeneous machines?
multidimensional Fourier transforms: fluid dynamics, signal processing, etc
accelerators provide most of computing power, but need to move data
communication still an issue (perhaps even more so): some new challenges

Batched asynchronous approach targeting extreme problem sizes
problem size limited by smaller device memory compared to host
process data in batches on GPU with entire data residing in CPU memory
overlap operations on different batches of data, hide compute and transfer costs

CUDA Fortran (Ravikumar et al. SC’19) on Summit (IBM+NVIDIA)
portability: using OpenMP for offload, up to Version 5.0

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 2 / 12

Synchronous 3D FFT using GPUs
1D domain decomposition (Slabs)

0
1
2
3

x
y

z
mz

Slabs: GPU parallelism instead of distributed
memory, fewer MPI tasks in communication
Copy entire slab from CPU (host (H)) to GPU
(device (D)) and back to CPU at end
1D FFTs using cufft or rocfft library
MPI Alltoall among all tasks to transpose
x−y to x−z slabs

H2D copy of complete slab

FFT : (kx, ky, kz) → (kx, y, kz)

Pack

D2H: send buffer

MPI Alltoall

H2D: receive buffer

Unpack

FFT : (kx, y, kz) → (x, y, z)

Large problem that may not fit on GPU? Any asynchronism possible?

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 3 / 12

Batched approach

Divide slab into np pencils and process each
pencil separately (nyp = nxp = N/np)
Overlap operations on different pencils to hide
some data transfer and compute costs

ip− 2 ip
N

y
x

z

mz

nyp

Overlap using one stream each (in CUDA Fortran) for data transfer and compute
Overlap: Compute on ip, HtoD on ip + 1, DtoH on ip− 1 and all-to-all on ip− 2
Non-blocking all-to-all allows overlap, MPI_WAIT ensures completion
GPU-Direct can be used to avoid copies before and after all-to-all
Repeat until all pencils (np) processed on GPU and transposed

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 4 / 12

Non-contiguous maps and strided copies

FFTs in y: need only a(1:nxp, 1:ny) on device
In CUDA Fortran use:

1 cudaMemCpy2DAsync (dst, dpitch, src, spitch, &
2 width, height, kind, stream)

– unique destination (dst) & source (src) buffers
– width (nxp) elements out of spitch (nx) to copy
from first dimension, height (ny) such copies

How to do it in OpenMP?
MAP(to:a(1:nxp, 1:ny)): not 5.0 compliant
— copy a to smaller abuf on host then MAP
— but this adds extra work on the host

Host
a(nx, ny)

Device

d_a(nxp, ny)

nx nxp

ny

1 allocate (a(nx, ny) , abuf(nxp, ny))
2 ! copy on host : abuf(:, :) = a(1:nxp, 1:ny)
3 !$OMP TARGET DATA MAP(tofrom: abuf)
4 ! do some work
5 !$OMP END TARGET DATA MAP
6 ! copy on host : a(1:nxp, 1:ny) = abuf(:, :)

Performance penalty due to additional operations on host

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 5 / 12

OpenMP 4.5+: omp_target_memcpy_rect?

Copy rectangular subvolume from a
multi-dimensional array
Callable from C/C++, use C-Fortran interface
ndims: no. of dimensions in array
vol: no. of elements to copy in each dimension
offset: no. of elements from base of each
dimension, after which to copy data from/to
– In 5.0: from origin of dst (src), need clarity
dims: no. of elements in each dimension
Need to account for C vs. Fortran ordering
– first dimension along row (ny) even though in
Fortran it is along column

1 ! src on host of shape (nx, ny)
2 ! dst on device of shape (nxp, ny)
3

4 ! copy src (1:nxp, 1:ny) to dst (1:nxp, 1:ny)
5

6 num_dims = 2
7 vol (1) = ny ; vol (2) = nxp
8 dst_offset (1) = 0 ; dst_offset (2) = 0
9 src_offset (1) = 0 ; src_offset (2) = 0

10 dst_dims(1) = ny ; dst_dims(2) = nxp
11 src_dims(1) = ny ; src_dims(2) = nx
12

13 omp_target_memcpy_rect (dst, src , elem_size ,
ndims, vol , dst_offset , src_offset ,
dst_dims, src_dims, dst_dev , src_dev)

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 6 / 12

Interoperability between OpenMP and non-blocking libraries
1 TARGET DATA MAP(tofrom:a)
2

3 TASK DEPEND(OUT:var)
4 TARGET DATA USE_DEVICE_PTR(a)
5 FFTExecute (a , forward, stream)
6 FFTExecute (a , inverse , stream)
7 END TARGET DATA
8 END TASK
9

10 TARGET TEAMS DISTRIBUTE DEPEND(IN:var) NOWAIT
11 a (:, :, :) = a (:, :, :) /nx
12 END TARGET TEAMS DISTRIBUTE
13

14 TASKWAIT
15 END TARGET DATA

Task A: Non-blocking FFT call
Task B: OpenMP kernel with
dependency on previous task
Expect kernel runs after FFT completes
But task A is considered complete after
call to library, freeing dependency
B executes before FFT completes
Returns incorrect results

Task dependency not sufficient to enforce required synchronization

A©

B©

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 7 / 12

DETACH to enforce synchronization
1 TARGET DATA MAP(tofrom: a)
2

3 TASK DEPEND(out:var) DETACH(event)
4

5 TARGET DATA USE_DEVICE_PTR(a)
6 FFTExecute (a , forward, stream)
7 FFTExecute (a , inverse , stream)
8 END TARGET DATA
9

10 hipStreamAddCallback (stream, ptr_callback, C_LOC(event), 0)
11 END TASK
12

13 ! Copy or compute on other data
14

15 TARGET TEAMS DISTRIBUTE DEPEND(IN:var) NOWAIT
16 a (:, :, :) = a (:, :, :) /nx
17 END TARGET TEAMS DISTRIBUTE
18

19 END TARGET DATA

1 subroutine callback (stream, status , event)
2 type(c_ptr) :: event
3 integer(kind=omp_event_handle_kind) :: f_event
4 call C_F_POINTER (event, f_event)
5 call omp_fulfill_event(f_event)
6 end subroutine callback

1. A: launch FFT, add call to callback
in stream where FFT is running

2. B waits as dependent on A, C
executes asynchronously

3. After FFT, function callback is
called and event fulfilled

4. A completes allowing B to run
Support for DETACH not yet available

A©

B©

C©

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 8 / 12

Porting asynchronous CUDA Fortran to OpenMP
1 do ip=1,np
2 NEXT = mod(ip+1,3); CURR = mod(ip,3);
3 PREV = mod(ip−1,3); COMM = mod(ip−2,3);

4 cudaStreamWaitEvent (trans_stream, DtoH(NEXT), 0)
5 cudaMemCpy2DAsync (abuf(NEXT),a(ip+1),trans_stream)
6 cudaEventRecord (HtoD(NEXT),trans_stream)

7 cudaStreamWaitEvent (comp_stream, HtoD(CURR), 0)
8 FFTExecute (abuf(CURR), comp_stream)
9 cudaEventRecord (comp(CURR), comp_stream)

10 cudaStreamWaitEvent (trans_stream, comp(PREV), 0)
11 cudaMemCpy2DAsync (snd(ip-1), abuf(PREV), &
12 trans_stream)
13 cudaEventRecord (DtoH(PREV), trans_stream)

14 cudaEventSynchronize (DtoH(COMM))
15 MPI_IALLTOALL (snd(ip-2))
16 end do

1 do ip=1,np
2 NEXT = mod(ip+1,3); CURR = mod(ip,3);
3 PREV = mod(ip−1,3); COMM = mod(ip−2,3);

4 TASK DEPEND (IN:DtoH(NEXT), OUT:HtoD(NEXT))
5 omp_target_memcpy_rect (abuf(NEXT), a(ip+1))
6

7 TASK DEPEND (IN:HtoD(CURR), OUT:comp(CURR))
8 DETACH(event)
9 FFTExecute (abuf(CURR), comp_stream)

10 TASK DEPEND (IN:comp(PREV), OUT:DtoH(PREV))
11 omp_target_memcpy_rect (snd(ip−1), abuf(PREV))
12

13

14 TASK DEPEND(IN:DtoH(COMM))
15 MPI_IALLTOALL (snd(ip-2))
16 end do

DEPEND clause replaces cudaEventRecord & cudaStreamWaitEvent
omp_target_memcpy_rect replaces cudaMemCpy2DAsync

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 9 / 12

Performance: Non-Batched synchronous version
Summit (XL compiler) up to 1024 nodes (∼ 22% of full machine) using 1 task/GPU
Timings for 3 pairs of forward and inverse transforms

#
Nodes

Prob.
Size

Time (s)
CPU CUDA OMP

2 15363 5.21 2.39 2.41
16 30723 6.79 3.30 3.16

128 61443 9.10 5.26 5.01
1024 122883 10.59 4.30 4.12

0

2

4

6

8

10

12

CPU CUDA OMP CPU CUDA OMP

OpenMP & CUDA show similar performance (∼ 2.6X speedup for 12k3)
GPU: compute negligible but additional cost due to copies, 62% in MPI
OpenMP data copies slower than in CUDA, but compute faster !
OpenMP code also works with CCE compiler and AMD GPUs

128 node 1024 node
MPI

Compute
Copy

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 10 / 12

Performance: Batched version

OpenMP version: copy on host from large buffer
to small buffer before UPDATE (workaround)
– omp_target_memcpy_rect slow
compared to workaround and cudaMemCpy2D

6k3 OMP is 16.1s slower than CUDA async
– 12.4s to copy one buffer to another on host
– 3.7s (or 20%) saving due to asynchronism?

Work in progress: optimize OpenMP version
– Fast rectangular copy to avoid host operations
– DETACH will help enable asynchronism

Both OMP codes work with CCE & AMD GPUs

6 pencils per slab
Performance on Summit using XL
OpenMP version uses workaround

#
Nodes

Prob.
Size

Time (s)
CUDA OMP
async sync

4 30723 10.14 26.20
32 61443 13.53 29.64

Production code using CUDA: 18k3

on 3k nodes, ∼ 3X speedup

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 11 / 12

Summary and Future Work

Progress made on OpenMP offload implementation of 3D Fast Fourier Transforms
Porting from a successful CUDA Fortran code (SC’19) on Summit at OLCF
At present: batched, synchronous, which enable large problem sizes

Some challenges of portability overcome, some pending full OMP 5.0 availability:
Strided copy b/w smaller device & larger host arrays: omp_target_memcpy_rect
Synchronizing non-blocking GPU library calls & OpenMP tasks: DETACH

Future work towards 3D FFTs at massive scale, at resolution beyond 18,4323

Batched asynchronism algorithm (using DETACH) needed for optimal performance
Portable GPU parallelism for communication-intensive applications

Comment: Need better Fortran support (would like to see OMP 5.0 routines that are only
C-callable also callable from Fortran, with good examples)

K.Ravikumar, O.Hernandez, J.Levesque, S.Nichols, P.K.Yeung Portability of GPU code for 3D FFTs Sept 2, 2020 12 / 12

